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PLX-R18 is a novel cell-based product of ex vivo expanded adherent human-placenta-derived stromal 
cells. After intramuscular administration, these living cells are capable of secreting various cytokines 
that produce a therapeutic benefit. The endogenously secreted cytokines facilitate the recovery of 
hematopoietic progenitor cells and regenerate multiple blood lineage cells. Preclinical studies have 
demonstrated that PLX-R18 cells can prevent and also mitigate hematopoietic acute radiation
syndrome in experimental animal models. This agent has an open US Food and Drug Administration
investigational drug status for hematopoietic system-associated ARS (H-ARS). A phase I study using
patients with bone marrow failure demonstrated the safety of the agent while promoting hematopoi-
etic regeneration in humans.
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Risks associated with nuclear and radiological accidents, military 
use of related weapons, and possible terrorist attacks have
renewed interest in radiation medical countermeasures (MCMs)
to treat unwanted radiation exposures.(p1),(p2) Exposure to acute, 
potentially lethal doses of ionizing radiation can result in acute 
radiation syndrome (ARS) with deleterious effects to various 
organs. The radiosensitive tissues of the body, such as the
hematopoietic and gastrointestinal (GI) systems, are the most
susceptible to exposure-related radiation injuries.(p3) 

Hematopoietic-system-associated ARS (H-ARS) is characterized 
by dose-dependent bone marrow depression, leading to life-
threatening neutropenia and thrombocytopenia, and possible
death resulting from opportunistic infections and uncontrolled
bleeding, with subsequent, not uncommon, multi-organ fail-
ure.(p4) Neutropenia and thrombocytopenia begin at different
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days post-irradiation depending on the absorbed dose. Thrombo-
cytopenia increases the risk of hemorrhage and poor wound 
healing, whereas neutropenia increases the risk of infections. 
Death caused by H-ARS that results in infection, excessive bleed-
ing or multi-organ failure occurs within several weeks of high
dose exposure.(p5),(p6) 

Radiation-induced depletion of vital hematopoietic stem and 
progenitor cell (HSPC) pools is the ultimate cause of morbidity
and mortality during H-ARS.(p7) HSPCs are specialized, self-
renewing cells of the bone marrow that have the ability to differ-
entiate into lineage-specific progenitors, giving rise to mature
cells belonging to various blood cell types that have the ability
to self-renew.(p8) Through these processes, stem cells are capable 
of sustaining lifelong hematopoiesis. Damage to these cells, for 
example by exposure to high doses of ionizing radiation,
negatively impacts the body’s ability to generate the blood cell
/creativecommons.org/licenses/by-nc-nd/4.0/). 
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lineages. The decline in HSPC numbers that occurs naturally over 
time, because of aging or damage to these cells at younger ages is 
most problematic. Survival following H-ARS is dependent on the
recovery of the surviving stem and progenitor cells and, in turn,
on the production of mature, functional neutrophils and
platelets.

The development of MCMs is an important security issue for 
both individuals and the security of nations across the world.(p9) 

In any nuclear or radiological scenario of considerable scale, the
number of exposed individuals will be large.(p10),(p11) In addition, 
in light of the increasing clinical use of radiotherapy for various 
medical conditions, there is also a need to develop preventive
and mitigative options that can minimize collateral injury to
normal tissues.(p12),(p13) Furthermore, radioprotective MCMs will 
also be needed for other applications, such as space travel.(p14) 

These options and medicinals generally are defined by the time 
of their administration in relation to the radiation exposure,
being categorized as radioprotectors, radiomitigators, or thera-
peutics, but rarely as all three.(p2),(p15) 

Ionizing radiation includes c-rays, X-rays (electromagnetic 
radiation), and particulate radiation (neutron, electrons, protons, 
b-particles and a-particles). X-rays and c-rays are of low linear 
energy transfer (LET), illustrated by issue tracks of relatively 
sparse ionizations. Neutrons and a-particles are of high LET, with 
a high density of ionizations per unit track. The free radicals pro-
duced by the radiolysis of the aqueous milieu in cells and tissues
are largely the causative agent for the inflicted injuries. Free rad-
icals (mostly hydroxy radicals) lead to indirect radiation injury,
producing roughly 75% of the low LET damage.(p3),(p16),(p17) This 
damage may be prevented by free radical scavengers, but these 
scavengers are less efficient in preventing injuries arising from 
high-LET radiation. Variation in human response to injury may
result largely from each individual’s ability to detoxify free radi-
cals through the actions of endogenous antioxidants and related
enzymes.

The basic types of injury that arise from radiological/nuclear 
exposures are either external or internal in nature, with the latter 
being associated with contamination by radioactive materials (ra-
dionuclides) that are incorporated into the body. A few types of
radiation syndrome are based on the time of symptom manifes-
tation in relation to exposure, namely acute, delayed, late, and
chronic.(p18) Higher doses of radiation generally result in more 
severe early effects (i.e., the so-called deterministic type of 
radiation-associated injuries). With prolonged survival, there is 
an increased risk of an array of late-arising (i.e., delayed) patholo-
gies and related diseases. Late-arising pathologies may include
cancer or organ fibrosis.

The clinical progression of and survival rates for ARS depend
on the absorbed dose and its distribution.(p3) Clinical manifesta-
tions of ARS in humans comprise three main subsyndromes: 
H-ARS, gastrointestinal ARS (GI-ARS), and neurovascular ARS
(NV-ARS).(p19) Selective MCMs can, both in principal and in prac-
tice, effectively target the H-ARS and GI-ARS subsyndromes of 
ARS and thus are high on the priority list for further research 
and development. The US Food and Drug Administration (FDA)
has approved elevenMCMs for human use for H-ARS (Neupogen,
Zarxio, Nypozi, Releuko, Neulasta, Udenyca, Stimufend, Ziex-
tenzo, Fylnetra, Nplate and Leukine). Leukine has recently been
2 www.drugdiscoverytoday.com
approved in the European Union by the European Medicines 
Agency (EMA). All of these agents are approved as radiomitigators
for use after exposure.(p20),(p21),(p22),(p23),(p24),(p25),(p26),(p27),(p28), 
(p29),(p30),(p31),(p32) Although there are a large number of poten-
tially useful agents at various stages of drug development, no 
MCM has been approved specifically for use prior to unwanted
(non-clinical) radiation exposure.(p2),(p33),(p34),(p35),(p36) 

Pluri Inc. is developing PLacental eXpanded (PLX)-R18 as a 
radiation MCM for H-ARS under the FDA Animal Rule.(p37) 

PLX-R18 is a novel cell-based product, comprised of ex vivo 
expanded adherent human-placenta-derived stromal cells for
parenteral administration.(p38),(p39),(p40),(p41),(p42) These cells are 
placental-derived mesenchymal-like adherent stromal cells of 
fetal origin. These cells express mesenchymal stromal cell surface 
markers and have limited reproductive capacity (undergoing 
approximately 60 population doublings before senescence) while 
maintaining stable karyotypes, and display several distinct differ-
entiative and maturational pathways (giving rise to both osteo-
cytes and adipocytes). PLX-R18 cells aid vital functions by
secreting critically important cytokines that serve to support
the hematopoietic system; these processes, in turn, act to reduce
radiation exposure-induced lethality.(p40),(p43),(p44),(p45) The 
mechanism of PLX-R18 reparative action during H-ARS is 
thought to involve the secretion by these cells of multiple 
hematopoietic cytokines and growth factors within the microen-
vironment of lymphohematopietic tissues following irradiation. 
These soluble, signaling agents, which include stem cell factor 
(SCF), granulocyte colony-stimulating factor (G-CSF), granulo-
cyte–macrophage colony stimulating factor (GM-CSF), macro-
phage colony-stimulating factor (M-CSF), interleukin 6 (IL-6),
interleukin 8 (IL-8), and monocyte chemoattractant protein 1
(MCP-1), promote the differentiation, proliferation and matura-
tion of hematopoietic progenitor cells and precursor cells.(p46) 

A series of preclinical, animal-based safety and efficacy assess-
ments of PLX-R18 has been conducted by Pluri. A toxicological 
study in unirradiated immunocompromised mice supports the 
safety of PLX-R18, with no adverse effect after treatment follow-
ing repeated injections (Unpublished – Pluri Biotech Investigator 
brochure). Biodistribution studies, conducted in both immuno-
compromised, unirradiated mice and in immunocompetent, 
unirradiated and irradiated rhesus nonhuman primates (NHP), 
demonstrated that PLX-R18 cells remain locally at the intramus-
cular (im) injection site for a limited time, after which these cells
are cleared from the body (Unpublished – Pluri Biotech Investiga-
tor brochure). A clinical phase I study of patients suffering from
bone marrow failure, resulting from incomplete engraftment fol-
lowing bone marrow transplantation, demonstrated that PLX-
R18 cell treatment is safe and well tolerated, and offers promising
improvements in hematopoietic recovery profiles.(p41),(p47) Fur-
ther, the efficacy of PLX-R18 in mitigating radiation-induced 
bone marrow failure and in enhancing survival has been demon-
strated in a series of experiments using animal models; for exam-
ple, PLX-R18 promoted the survival of lethally irradiated mice
over a wide range of total-body radiation doses when adminis-
tered either pre- or post-exposure.(p42),(p47),(p48) In brief, previous 
studies have shown beneficial medical effects of PLX-R18 in 
reducing radiation-induced H-ARS, when used either as a mitiga-
tor administered after exposure to ionizing radiation or as pro-
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Radioprotective and radiomitigative efficacy of PLX-
R18 in murine models
The radioprotective and radiomitigative efficacies of the novel 
agent PLX-R18 have been well-investigated in acutely irradiated 
murine models, as well as in a pilot rhesus NHPmodel.(p44),(p48),(p49) 

Different doses of cells with different treatment schedules and dif-
ferent radiation doses have been used in these studies. Usually, a 
radiation dose of LD50/30 (lethal dose 50% within 30 days) to 
LD90/30 (lethal dose 90% within 30 days) is preferred in initial stud-
ies using murine models to evaluate the efficacy of any agent. Sim-
ilarly, the administration of various numbers of cells has been 
investigated to identify the optimal treatment dose. PLX-R18 has 
been tested as both a radioprotector and a radiomitigator, and in 
both cases, two doses were needed for optimal efficacy. In the
radioprotector strategy, a second dose was used after radiation
exposure, and hence the agent was not used according to the strict
definition of a radioprotector. For radiomitigation, both doses were
used after exposure.

PLX-R18 efficacy in murine models
PLX-R18 was shown to reduce irradiation-induced lethality 
caused by a range of total-body radiation doses in C57BL/6 (nor-
mal radiation sensitivity) and C3H/HeNHsd (increased radiation
sensitivity) mice.(p44),(p48) Studies showed a beneficial effect of 
PLX-R18 in reducing irradiation-induced H-ARS when used 
either as a mitigator, given after exposure, and/or as prophylactic 
treatment, given up to 24 h prior to exposure. PLX-R18 
enhanced survival in these two mouse strains that have markedly 
different radiation sensitivities following widely ranging, poten-
tially lethal radiation exposures (i.e., total-body radiation doses 
ranging from LD50/30 to LD90/30 ). From these lethality-based
experiments, measures of the agent's overall radioprotectiveness
(in terms of a survival benefit) were estimated; for example, the
radiation dose reduction factor (DRF) was calculated to be 1.22
using C3H/HeNHsd mice. PLX-R18 has been shown to decrease
mortality rates in mice significantly when given im at both 1
and 5 days after irradiation.(p44),(p48),(p49),(p50) 

Safety in murine models
A toxicology study was conducted in nonobese diabetic (NOD)/-
severe combined immunodeficiency (SCID) mice, which are 
immunocompromised, under good laboratory practice condi-
tions. Following two im injections of 1 million cells of PLX-R18 
per mouse (40 million cells/kg) one week apart, no adverse effects
were noted (Pluri Biotech, unpublished observation). PLX-R18,
administered in two doses at four days apart, has also been
reported to be safe in unirradiated C57BL/6 mice.(p48) In this 
study, PLX-R18 was administered to naïve mice at an increased 
dose of 2 million cells/dose, with two doses given 4 days apart. 
Control animals received the carrier (PlasmaLyte) alone. Unirra-
diated mice in both the PLX-R18-test group and the
PlasmaLyte-control group demonstrated low white blood cells,
lymphocytes, and platelets when compared with the naïve mice
on day 1.(p48) By day 5, the white blood cell counts were almost
the same in all three groups. By day 7, counts in all groups were 
the same and no signs of acute toxicity were observed. Necropsy 
at the end of the study found no differences between the three 
groups. There was no difference between the various groups with
respect to the renal and hepatic serum biochemistry panels. In
brief, acute toxicity data suggested that PLX-R18 administered
to mice as two doses of 2 million cells/dose given four days apart
appeared to be safe.

Survival benefit afforded by PLX-R18 in murine models
PLX-R18 has been tested as both a radioprotector for prophylaxis
and a radiomitigator for post-exposure use.
Radioprotection 
Administration of PLX-R18 both one day prior and three days 
after lethal irradiation (8 Gy) increased 30-day survival compared
to administration of the vehicle PlasmaLyte (p < 0.001).(p48) 

Hematological recovery 
In the groups exposed to 8 Gy total-body radiation, white blood 
cells, neutrophils, platelets, and lymphocytes all declined, reach-
ing nadirs shortly after irradiation. Administration of PLX-R18 
(one day prior to and three days after irradiation) resulted in 
higher numbers of white blood cells, neutrophils, plate lets, and
lymphocytes in treated mice compared with mice given only
the control, PlasmaLyte.(p48) In unirradiated mice, no significant 
differences in the blood counts of PlasmaLyte and PLX-R18 groups 
were noted over time, suggesting that the administration of PLX-
R18 had no adverse effect. PLX-R18 provided radioprotection (ev-
idenced by less severe nadirs in multiple cell l ineages) and acceler-
ated hematopoietic recovery following radiation exposure.(p48) 

Radiomitigation 
In order to determine the efficacy of delayed administration, a 
study was carried out in which the first dose of PLX-R18 was 
delivered at 24, 48 or 72 h post-irradiation, followed by a second 
dose at 5 days post-irradiation. PLX-R18 treatment in all three
treatment groups conferred increased survival following irradia-
tion with the highest impact on survival observed in the mice
receiving doses on days 1 and 5 (Pluri Biotech, unpublished
observation).(p50) All PLX-R18 treatment groups showed signifi-
cant increases in white blood cells, red blood cells, and platelets
compared to vehicle control.

Mechanistic studies in murine models
Blood plasma levels of erythropoietin increased following irradi-
ation, but this response was marked in the PLX-R18-treated mice 
as compared to control, with pre-exposure baseline levels being
restored by day 30 post-exposure in the PLX-R18-treated
mice.(p48) The FMS-like tyrosine kinase 3 ligand (Flt-3L) showed 
improved recovery in the PLX-R18-treated group compared to 
vehicle control. Further, within the PLX-R18-treated group, 
levels of serum amyloid A (a sepsis marker) and procalcitonin 
(an inflammation marker) remained low throughout the study. 
Previous studies established that these plasma biomarkers exhibit 
dose- and time-dependent responses to radiation exposure and
can function as early prognostic indicators of ARS severity. When
combined with blood cell counts, these markers enable rapid
assessment and triage of radiation casualties, particularly valu-
able for mass-casualty incidents where timely dose estimation
is critical for treatment decisions.(p51),(p52) Levels of E-selectin
www.drugdiscoverytoday.com 3
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and sP-Selectin (vascular endothelial injury biomarkers) dropped 
in the irradiated groups, but recovery was observed in the PLX-
R18 group. However, the cytokine response patterns that were 
induced following irradiation were somewhat in contrast to the 
patterns noted in a larger study that measured a broad panel of
cytokines. In this larger study, irradiation tended to elicit ele-
vated (not suppressed) responses, whereas treatment with the
test agent, PLX-R18, appeared to have a modulating effect that
was often dampening by nature, i.e., ameliorating the effect of
irradiation.(p48) In addition, PLX-R18 has been demonstrated, 
by qRT-PCR assay, to abrogate the expression of several genes
that are involved in autoimmune pathways.(p48) 

The interplay between radiation exposure and genes that reg-
ulate apoptosis is well recognized.(p53),(p54),(p55) For example, AKT 
phosphorylation mediates pro-survival and anti-apoptotic
events.(p50),(p56) pAKT levels were elevated 4 h after irradiation 
when the irradiated PlasmaLyte group was compared with the 
unirradiated PlasmaLyte group, whereas pAKT elevation in the
PLX-R18-treated group was comparatively less, implicating the
involvement of the AKT pathway in PLX-R180s ability to reduce
radiation injury.(p48) 

Radiomitigative efficacy in an NHP model
A rhesus macaque study involving 62 animals was conducted 
with the objective of further characterizing the injury-
mitigative effect of PLX-R18 (Table 1).(p49),(p50) NHPs were treated 
with three different im doses (4, 10 and 20 million cells/kg) of 
PLX-R18 at days 1 and 5 post-irradiation, or with vehicle. NHPs
were exposed to total-body radiation at 6 Gy (LD30/45) and were
monitored for 45 days post-irradiation.(p49),(p50) Although this 
study was not powered to demonstrate a statistically significant 
survival difference, all three doses of PLX-R18 appeared to
improve survival outcomes in irradiated NHPs relative to
untreated controls.(p49),(p50) Despite the limitations presented 
by small sample size, there was a tendency towards earlier recov-
ery of neutrophil, platelet, hemoglobin, and lymphocyte levels 
in irradiated groups that were treated with PLX-R18. In irradiated 
animals, PLX-R18 treatment was also associated with a trend
towards a delay in reaching critical periods of blood cytopenias,
which were generally less severe and less prolonged than those
in animals that were not treated with PLX-R18.(p49) In unirradi-
TABLE 1 

Details of a nonhuman primate (NHP) study of the ability of PLX-R1
Group Number of NHP used Males/females Dose of PLX-R18

cells (million)

1 6 3M/3F Control
2 6 3M/3F 4
3 6 3M/3F 10
4 6 3M/3F 20
5 6 3M/3F Control
6 6 3M/3F 4
7 7 3M/4F 10
8 6 3M/3F 20
9 3 3M/0F Control
10 3 3M/0F 4
11 3 3M/0F 10
12 4 3M/1F 20

4 www.drugdiscoverytoday.com
ated NHPs, no clinical changes were noticed following treatment 
with PLX-R18. In addition, in all of the treated animals (irradi-
ated or unirradiated), PLX-R18 was cleared from the system (in-
cluding the im injection site) by day 45 post-irradiation.

Safety and toxicity in phase I clinical studies
Pluri has completed a human phase I study (NCT03002519) in 
adult patients who had prolonged incomplete hematopoietic 
recovery following either allogeneic or autologous hematopoietic
cell transplant to assess the safety of PLX-R18 (Table 2).(p41),(p43), 
(p46),(p57) The study was designed to include patients who were at 
least 3 months post-transplant, presenting with persistent 
thrombocytopenia (<50,000/lL), and/or anemia (hemoglobin
<8 g/dL), and/or neutropenia (absolute neutrophil <1,000/ 
mm3 ), who were otherwise stable and had no other observed
cause of cytopenia, such as infection or graft rejection. A dose-
escalation (1, 2 and 4 million cells/kg, administered at days 1
and 7) protocol was embedded into the study design to manage
potential risks.(p41),(p43),(p46),(p57) Treatment with PLX-R18 was 
found to be safe and well-tolerated. This agent was clearly effec-
tive in some patients.(p43) The most frequently reported treat-
ment emergent adverse effects were transient injection site 
reactions with mild to moderate severity, and without sequelae. 
Improvement was observed in the majority of the patients. 
Among the high-dose group, improvements in hemoglobin,
absolute neutrophil count, and platelets were observed. On the
basis of these and other data, the US FDA granted orphan drug
designation to PLX-R18 cell therapy as a treatment for ARS in
2017.

Biodistribution 
Studies were performed to assess the biodistribution of PLX-R18 
in both mice (NOD-SCID of both sexes) and NHPs (immunocom-
petent unirradiated and irradiated). In the murine model, PLX-
R18 that was injected im remained local to the injection site, 
and the quantities of PLX-R18 cells that were present fell over 
the time. At 13 weeks post-injection, very few cells remained in
the bodies of the injected mice. In the NHPs, there was no detect-
able human-origin DNA either in the injection sites (the PLX-
R18/vehicle was evenly divided and administered by im injection
to the four lumbar dose areas or into both hind limbs) or in
8 to mitigate responses to two different radiation doses
(p49) 

Radiation dose (Gy) Numbers of surviving
males/females

Survival rate 

Unirradiated All 100% 
Unirradiated All 100% 
Unirradiated All 100% 
Unirradiated All 100% 
6.0 Gy 2 M/1F 50% 
6.0 Gy 3 M/2F 83% 
6.0 Gy 3 M/3F 86% 
6.0 Gy 2 M/2F 67% 
2.93 Gy All 100% 
2.93 Gy All 100% 
2.93 Gy All 100% 
2.93 Gy All 100% 

move_t0005
move_t0010


×
×

×
×

×
×
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PLX-R18 
1 million cells/kg, 
N = 3

PLX-R18 
2 million cells/kg, 
N = 6

PLX-R18 
4 million cells/kg, 
N = 12

Total 
N =  2  1

Demographics 
Age in years, mean (SD) 55.9 (11.9) 49.0 (5.6) 57.0 (3.8) 57.0 (15.1) 
Male, n (%) 12 (57.1) 2 (66.7) 2 (33.3) 8 (66.7) 
BMI, kg/m2 , mean (SD) 29.1 (6.6) 33.5 (7.5) 26.0 (5.1) 29.6 (6.7) 

Baseline blood counts
30.5 (4.0,
83.25)

PLT, 103 /lL, median (min, max) 24 (4.0, 24.5) 21.8 (12.0, 46.0) 36.3 (11.0, 83.25)

PLT < 10 103 /lL, n (%) 1 (4.8) 1 (33.3) 0 (0.0) 0 (0.0) 
PLT < 20 103 /lL, n (%) 5 (23.8) 1 (33.3) 2 (33.3) 2 (16.7) 
HGB, g/dL, median (min, max) 8.8 (6.3, 11.8) 8.7 (8.5, 8.9) 8.3 (6.5, 11.4) 9.1 (6.3, 11.8)
ANC, cells 103 /lL, median (min, max) 1.3 (0.2, 3.2) 2.1 (0.9, 3.2) 1.2 (0.8, 1.6) 1.2 (0.2, 1.9)
ANC < 0.5 103 /lL, n (%) 3 (14.3) 0 (0.0) 0 (0.0) 3 (25.0) 
ANC < 1 103 /lL, n (%) 7 (33.3) 1 (33.3) 1 (16.7) 5 (41.7) 
Lymphocytes, cells 103 /lL, median (min, max) 0.7 (0.1, 2.3) 0.4 (0.3, 1.4) 0.5 (0.1, 1.4) 0.7 (0.3, 2.3)

Disease history: primary diagnosis
Acute lymphoblastic leukemia (ALL), n (%) 7 (33.3) 1 (33.3) 3 (50.0) 3 (25.0) 
Acute myelogenous leukemia (AML), n (%) 3 (14.3) 1 (33.3) 0 (0.0) 2 (16.7) 
Multiple myeloma, n (%) 2 (9.5) 0 (0.0) 0 (0.0) 2 (16.7) 
Myelodysplastic syndrome (MDS), n (%) 2 (9.5) 0 (0.0) 1 (16.7) 1 (8.3) 
Non-Hodgkin lymphoma (NHL), n (%) 2 (9.5) 1 (33.3) 0 (0.0) 1 (8.3) 
Other (malignant), n (%) 5 (23.8) 0 (0.0) 2 (33.3) 3 (25.0) 

HCT type and cell source
Allogeneic, n (%) 19 (90.5) 2 (66.7) 6 (100.0) 11 (91.7) 
Bone marrow, n (%) 6 (28.6) 1 (33.3) 1 (16.7) 4 (33.3) 
Peripheral blood, n (%) 13 (61.9) 1 (33.3) 5 (83.3) 7 (58.3) 
Umbilical cord, n (%) 2 (9.5) 1 (33.3) 0 (0.0) 1 (8.3) 

Adverse events 
Patients with any TEAE, n (%) 21 (100.0) 3 (100.0) 6 (100.0) 12 (100.0) 
Patients with a serious TEAEs, n (%) 15 (71.4) 3 (100.0) 4 (66.7) 8 (66.7) 
Patients with TEAEs with fatal outcome, n (%) 4 (19.0) 0 2 (33.3) 2 (16.7) 
Patients with TEAEs who were related to donor, n (%) 16 (76.2) 3 (100.0) 2 (33.3) 11 (91.7) 
Patients with TEAEs who were not related to donor, n

(%)
5 (23.8) 0 4 (66.7) 1 (8.3) 

ANC, Absolute neutrophil count; BMI, Body mass index; HCT Hematopoietic cell transplantation; HGB Hemoglobin; PLT, Platelets; SD, Standard deviation; TEAE, Treatment emergent adverse event.
Information gathered from McGuirk et al..(p41)
un-injected tissues/organs (non-injection site muscle, liver left 
and right lobes, spleen, inguinal lymph nodes and iliac lymph 
nodes) on day 45 post-irradiation (<20 copies/mg genomic
DNA, which was the lower limit of quantification).(p43),(p46),(p48) 

These results suggest that PLX-R18 cells remain local at the site 
of injection and are present within the body for a limited period,
after which they are cleared from the body entirely.

Conclusions 
Although efforts to develop MCMs for acute radiation exposure-
related injuries were initiated more than six decades ago, to date, 
only four agents and their seven biosimilars have been approved
by the US FDA for treatment of H-ARS.(p31),(p32) All of these 
agents are defined as radiomitigators for H-ARS, and no agent 
has been approved for GI-ARS, for the delayed effects of acute 
radiation exposure, or for late cognitive dysfunctions and other
quality-of-life issues following lower and survivable radiation
doses. Furthermore, no radioprotector has been approved specif-
ically for prophylaxis of ARS. In addition, these approved agents 
have some limitations, including the need for repeated injections 
(except Nplate), side effects, and the use of blood products. Thus,
there is an urgent need to continue to develop additional agents
for ARS and all of its sub-syndromes.

The positive features of the novel agent PLX-R18 are that it 
does not require human leukocyte antigen matching, is pro-
duced on a cGMP industrial scale and can easily be stored, dis-
tributed and administered im. After injection, the PLX-R18 cells 
remain at the injection site, do not migrate to other locations, 
do not differentiate, and are cleared from the body within several 
weeks. While in the body, these cells induce a systemic effect
through multi-factorial secretion of pro-hematopoietic cyto-
kines. The efficacy of PLX-R18 to mitigate H-ARS has been
demonstrated using the well-established preclinical models of
mice and NHP. These studies have provided evidence of both
decreased mortality of acutely irradiated animals and
significantly improved blood profiles in these animals following
www.drugdiscoverytoday.com 5
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treatment with PLX-R18. The stimulation of multiple 
hematopoietic lineages, coupled with increased rates of survival, 
were clearly demonstrated in animals following the administra-
tion of test agent, PLX-R18. By contrast, and in general support 
of the agent’s favorable safety profile, no change was noted either 
in blood cell counts/differentials or in survival when treated, irra-
diated animals were compared with treated, unirradiated ani-
mals. Furthermore, this good safety profile was supported and
fully documented following the completion of a Phase I clinical
study on the safety of PLX-R18 within patients who had incom-
plete hematopoietic recovery following hematopoietic cell
transplantation.(p46) 

Despite these promising characteristics, implementation of 
PLX-R18 in mass casualty settings would require consideration 
of practical limitations, including specialized storage require-
ments, thawing protocols, and trained personnel for administra-
tion. These factors may limit the immediate deployment of PLX-
R18 in the field compared more than would be the case for con-
ventional therapeutics. Nevertheless, PLX-R18 has the significant
therapeutic potential, as evidenced by comprehensive preclinical
and clinical studies that have shown a unique multifactorial
mechanism that stimulates all three blood cell lineages. These
findings support continued development efforts to address the
operational considerations.

The studies presented in this review all used total-body 
gamma-irradiation, but additional studies with partial-body, lin-
ear accelerator X-ray, and mixed field (neutron plus gamma) irra-
diation are planned. It will be important to investigate the 
efficacy of PLX-R18 against low as well as high linear energy
transfer radiation. Similarly, investigations into its efficacy
against partial-body in addition to total-body exposure will be
important.

In summary, PLX-R18 has proven to be both efficacious and 
safe in medically managing ARS. The efficacy of PLX-R18, both 
as a radioprotector and as a radiomitigator, has been demon-
strated by a series of animal studies in both mice and NHP. We 
believe that this rather unique medical product represents a very
promising new class of MCM for ARS, specifically in terms of its
efficiency to block or mitigate the adverse effects of acute, poten-
tially fatal, radiation injuries in experimental animals and possi-
6 www.drugdiscoverytoday.com
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