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Use of Human Placenta-Derived Cells in a
Preclinical Model of Tendon Injury
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Background: Emerging data suggest that human cells derived from extraembryonic tissues may have favorable mus-
culoskeletal repair properties. The purpose of this study was to determine whether the injection of human placenta-derived
mesenchymal-like stromal cells, termed placental expanded cells (PLX-PAD), would improve tendon healing in a preclinical
model of tendinopathy.

Methods: Sixty male Sprague-Dawley rats underwent bilateral patellar tendon injection with either saline solution
(control) or PLX-PAD cells (2 x 10° cells/100 pL) 6 days after collagenase injection to induce tendon degeneration.
Animals were killed at specific time points for biomechanical, histological, and gene expression analyses of the healing
patellar tendons.

Results: Biomechanical testing 2 weeks after the collagenase injury demonstrated better biomechanical properties in
the tendons treated with PLX-PAD cells. The load to failure of the PLX-PAD-treated tendons was higher than that of the
saline-solution-treated controls at 2 weeks (77.01 + 10.51 versus 58.87 + 11.97 N, p = 0.01). There was no significant
difference between the 2 groups at 4 weeks. There were no differences in stiffness at either time point. Semiquantitative
histological analysis demonstrated no significant differences in collagen organization or cellularity between the PLX-PAD
and saline-solution-treated tendons. Gene expression analysis demonstrated higher levels of interleukin-13 (IL-1B) and IL-
6 early in the healing process in the PLX-PAD-treated tendons.

Conclusions: Human placenta-derived cell therapy induced an early inflammatory response and a transient beneficial
effect on tendon failure load in a model of collagenase-induced tendon degeneration.

Clinical Relevance: Human extraembryonic tissues, such as the placenta, are an emerging source of cells for mus-
culoskeletal repair and may hold promise as a point-of-care cell therapy for tendon injuries.

all ages. While activity modification, nonsteroidal anti-
inflammatory drugs, and physical therapy are the
mainstay treatments, many cases are refractory to these stan-
dard modalities. In those instances, corticosteroid injections
have traditionally produced good short-term results. However,
data have shown a lack of sustained therapeutic benefit and
possible deleterious effects on several musculoskeletal tissues'™.
Therefore, there is growing interest in biological therapies that
may augment tendon healing.
An emerging source of cells with favorable musculo-
skeletal regenerative characteristics is human extraembryonic

T endon injuries are common and affect individuals of

tissue>”. Unlike adipose-derived cells or bone marrow, cells
isolated from extraembryonic tissues, such as the placenta, are
not associated with the morbidity caused by harvesting pro-
cedures since the placenta is typically discarded. Cells isolated
from human extraembryonic tissues have been shown to have
attractive healing properties™'”''. Human placenta-derived
mesenchymal-like stromal cells display typical mesenchymal
stem cell (MSC) markers (CD105, CD73, and CD29) and do
not express hematopoietic markers (CD45, CD19, CD14, and
HLA-DR) or the endothelial cell marker CD31"*". In vitro and
in vivo studies have suggested that placental expanded cells (PLX-
PAD; Pluristem Therapeutics) display immunomodulatory and
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analyses were performed independent of the funding source. On the Disclosure of Potential Conflicts of Interest forms, which are provided with the
online version of the article, one or more of the authors checked “yes” to indicate that the author had other relationships or activities that could be
perceived to influence, or have the potential to influence, what was written in this work (Pluristem donation of study supplies) (http://links.lww.com/

JBJS/F336).

J Bone Joint Surg Am. 2019;101:e61(1-9) e http://dx.doi.org/10.2106/JBJS.15.01381


http://links.lww.com/JBJS/F336
http://links.lww.com/JBJS/F336

e61(2)

THE JOURNAL OF BONE & JOINT SURGERY *JBJS.ORG
VOLUME 101-A - NUMBER 13 -JULY 3, 2019

Sprague Dawley Rats
Bilateral Patellar Tendon Injury with
Collagenase

6 days after Collagenase Injury

2x10° human placental cells/100 pL 100 pL saline

I : |
Biomechanical Analysis (n=6-8)
1, 2, 4 weeks

Histological Analysis (n=4)
4 days, and 1, 2, 4 weeks

Gene Expression Analysis (n=4)
4, 7,14, 28 days

Fig. 1
Experimental layout.

pro-angiogenic properties via secretion of growth factors and
cytokines such as vascular endothelial growth factor (VEGF) and
interleukin-6 (IL-6)">". As a result, these cells have been used in
completed clinical studies for treating critical limb ischemia and
gluteal muscle regeneration after total hip arthroplasty'>'°.

This study was conducted to evaluate the use of PLX-
PAD cells for the treatment of tendinopathy. We are not aware
of any previous preclinical studies of the application of cells
derived from human placenta for tendon injuries. Our hy-
pothesis was that placenta-derived cell therapy would have a
beneficial therapeutic effect on tendinopathy as demon-
strated by biomechanical and histological analyses following
treatment.

Materials and Methods

ixty male Sprague-Dawley rats (weight, 300 to 350 g; Harlan

Laboratories) were used under an Institutional Animal Care
and Use Committee-approved protocol (Fig. 1). An immu-
nocompetent species was selected because previous experi-
ments demonstrated that human placenta-derived cells do not
elicit a relevant immunohistocompatibility response in other
species”. All animals underwent bilateral intratendinous in-
jection of bacterial collagenase (250 U of type-II collagenase
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[Sigma-Aldrich Chemical] in 0.3 mL of normal saline solu-
tion”) into the patellar tendon via a mini-open incision to
induce tendon degeneration (Fig. 2). Six days after the colla-
genase injection, the control treatment (100 p.L of 0.9% normal
saline solution) was randomly assigned to 1 limb of an animal
and the contralateral knee received the experimental treatment
(2 X 106 PLX-PAD cells/100 uL).

Preparation of PLX-PAD Cells

Human PLX-PAD cells are adherent stromal cells isolated from
full-term human placentas. They are cultured and undergo a 3-
dimensional growth phase in a closed bioreactor system'”. The
PLX-PAD cells are then cryopreserved in liquid nitrogen as an
allogenic “off-the-shelf” product until use. PLX-PAD cells are
of maternal origin, share the classic MSC membrane markers,
and are limited in their differentiation potential in vitro™.

For this study, PLX-PAD cells were prepared in accor-
dance with the manufacturer-recommended protocol prior to
injection®. A cell suspension was created with PLASMA-LYTE
A solution (Baxter) to achieve a final concentration of 2 x 10°
human PLX-PAD cells/100 L. The dosage of PLX-PAD cells
per animal was based on prior work using a smaller mouse model
(1% 106 cells/animal)® and the range of dosages used in previous
rat tendon healing studies (1 to 3 x10° cells per animal)"*®.

Carboxyfluorescein Diacetate Succinimidyl Ester (CFDA-SE)
Labeling of PLX-PAD Cells for Fluorescent Microscopy

To track them after injection, the PLX-PAD cells were labeled
with 3 g of CFDA-SE (Biotium [catalog #30050]) dissolved in
1 mL of dimethyl sulfoxide (DMSO) and 999 L of phosphate-
buffered saline solution. The PLX-PAD cells were then re-
suspended in 2 mL of the CFDA-SE solution and incubated for
10 minutes at 37°C. A cell pellet was then isolated through
centrifugation and resuspended with PLASMA-LYTE A solu-
tion to achieve a final cell concentration of 2 x 10° CFDA-SE-
labeled PLX-PAD cells/100 pL.

Biomechanical Analysis

After euthanasia, the patella as well as the patellar tendon and
its proximal tibial attachment were isolated. Specimens were
mounted onto a custom materials-testing system that ensured
that tension was aligned along the long axis of the tendon. The

Fig. 2

Fig. 2-A Intratendinous injection of collagenase. Fig. 2-B Injection of the patellar tendon with PLX-PAD cells (yellow circle).
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specimens were preconditioned with a preload of 1 N for 5
cycles and then loaded in uniaxial tension at a rate of 1 mm/
min until failure. Load to failure (N) and stiffness (N/mm) were
determined from the linear portion of the load-displacement
curve.

Histological Analysis

The patellar tendons were embedded in Optimum Cutting
Temperature (O.C.T.) compound (Tissue-Tek) and frozen in
liquid nitrogen for fluorescent microscopy. Cryostat sections
were visualized under fluorescent microscopy (Nikon Instru-
ments). In order to discern tissue architecture, sections were
fixed with 0.4% paraformaldehyde and stained with hema-
toxylin and eosin. Immunohistochemical staining for human
anti-CD29 was also performed to localize the PLX-PAD cells
within tendon tissue. The specimens were treated with 3%
H,0, and then incubated with anti-CD29 antibody (BioL-
egend) for 1 hour at room temperature.

For light and polarized light microscopy, specimens were
harvested and were fixed in 10% formalin. Samples were de-
calcified (Immunocal; StatLab) and embedded. Sequential
sagittal 5-pum sections of the entire patellar tendon were stained
with hematoxylin and eosin and picrosirius red. The slides were
examined using light and polarized light microscopy (Eclipse
E800; Nikon). Digital images were captured (Diagnostic Instru-
ments). Collagen organization was evaluated using picrosirius-
red-stained sections under polarized light microscopy; these
images were assessed for tissue birefringence'". Semiquanti-
tative analysis of picrosirius-red-stained photomicrographic
slides was performed with MATLAB (MathWorks).

Photomicrographs made under 2X and 10X magnifica-
tion were then imported into Image] (National Institutes of
Health). Histological measurements were performed within
the tendinosis region. The illumination and detection param-
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eters of the microscope were kept constant between specimens
to allow direct comparisons. Quantitative measurements were
made for total cell number (10X magnification), the area of
abnormal tendinosis tissue (2x), and change in polarization
brightness following bidirectional rotation (10x) as a measure
of tendon collagen organization**. The number of cells was
quantified using manual thresholding with ImageJ and con-
version of images of hematoxylin and eosin-stained specimens
to binary. Particle analysis was then performed to count the
cells within the area of tendinosis. The tendon healing areas
were measured after thresholding of each image. Collagen fibril
organization was evaluated with picrosirius red staining under
polarized light. A bidirectional analysis was performed using a
custom-made stage rotator. Photographs were made in the 0°
position (defined as a position in which the longitudinal axis of
the patellar tendon was horizontal) and in —45° and +45° of
rotation under 10X magnification®”. Mean signal intensity
(brightness) was measured in grayscale in each position, and
brightness change as a measure of collagen organization was
calculated. A greater brightness change indicates superior
collagen organization®*.

Gene Expression Analysis

At 4, 7, 14, and 28 days following treatment, the entire patellar
tendon was harvested. Total RNA was isolated using TRIzol
Reagent (Thermo Fisher Scientific). Equal concentrations of
mRNA (messenger RNA) were reverse transcribed using the
Bio-Rad iScript cDNA Synthesis Kit (Bio-Rad) following the
manufacturer’s suggested protocol. The cDNA (complemen-
tary DNA) products were amplified and quantified through
reverse transcription polymerase chain reaction (RT-PCR)
using iQ SYBR Green Supermix on a MyiQ Single-Color Real-
Time PCR Detection System (Bio-Rad). All reactions were
cycled 40 times in triplicate. Relative expression levels were

CFDA-SE Labeled Human
Placenta-derived Cells

50 Microns

Fig. 3

Fluorescent microscopy of CFDA-SE-labeled PLX-PAD cells (green circles) in patellar tendon tissue. There was a greater prevalence of fluorescent cell

signals at 4 days (Fig. 3-A) than at 4 weeks (Fig. 3-B).
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Fig. 4
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PLX-PAD cells inisolation (left). Note the cluster of PLX-PAD cells within patellar tendon collagen fibers at 4 weeks (middle, yellow oval). The cluster of cells
was further confirmed with anti-CD29 immunostaining identifying it as human PLX-PAD cells (right, red oval). H&E = hematoxylin and eosin.

calculated on the basis of ACT values (difference between the
cycle threshold of the gene of interest and the housekeeping
gene GAPDH [glyceraldehyde 3-phosphate dehydrogenase]).
Primers were designed for rodent GAPDH and the follow-
ing markers of interest: type-I collagen (Colla2; GenBank
NM_053356.1), type-1II collagen (Col3al; GenBank NM_
032085.1), IL-1B (GenBank NM_031512.2), IL-6 (GenBank
NM_012589.1), basic fibroblast growth factor (bFGF;
GenBank NM_019305.2), VEGF (GenBank NM_031836.2),
and transforming growth factor (TGF)-B1 (GenBank NM_
021578.2).

Statistical Analysis

Biomechanical, semiquantitative histological, and gene ex-
pression data were expressed as means and standard deviations.
Biomechanical testing results (load to failure and stiffness)
were compared between the experimental group and the con-

Patellar Tendon Load-to-Failure Over Time
120

100

LOAD-TO-FAILURE (N)
o
o

20

Intact 1 week 2 weeks 4 weeks

Uninjured OSaline ®WPLX-PAD
Fig. 5

trol group at each time point using a 2-sided Wilcoxon rank
sum test. Within-group comparisons (1 week versus 2 weeks
and 4 weeks) were also made. A 2-way analysis of variance
(ANOVA) with Tukey multiple comparison analysis was per-
formed on cell count, area of tendinosis, and brightness
change. A Student t test was performed on the PCR data. The
level of significance was set at p < 0.05.

Results
Gross Inspection of Tendons
he patellar tendons in both groups appeared inflamed at 1
and 2 weeks. They appeared thickened and fibrotic, con-
sistent with degeneration and an early healing response. The
gross appearance and caliber of the tendons began to resemble
normal at 4 weeks in both the control and the experimental
group but did not return to the baseline appearance of an
uninjured patellar tendon in either group. No gross differences

Patellar Tendon Stiffness Over Time
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Biomechanical analysis of patellar tendons treated with PLX-PAD demonstrated greater load-to-failure properties at 2 weeks compared with saline-solution-
treated controls. The difference dissipated by 4 weeks. The mean load to failure of uninjured patellar tendons is represented on the left. The error bars

represent the standard deviation. *P < 0.05.
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Fig. 6 Total cell counts within the affected area of tendons treated with PLX-PAD or saline solution. The error bars represent the standard deviation. Fig. 7
Quantitative measurement of the area of tendinosis (mm?2) in injured patellar tendons after PLX-PAD or saline solution injection. The error bars represent

the standard deviation.

in terms of tissue inflammation severity or adverse soft-tissue
reaction were seen between the 2 groups at any time point.

Viability of Placenta-Derived Cells After Injection

Fluorescent signals indicative of CFDA-SE-labeled PLX-PAD
cells were abundant in the tendons at 4 days after the injection
and were still seen at 4 weeks. The prevalence of signals de-
creased over time (Fig. 3). Stained sequential frozen sections
demonstrated darkly nucleated cells interspersed between the

PLX-PAD

0 degree 45 degree 0 degree

4 weeks

Fig. 8

Saline

collagen fibers of the patellar tendon. Human anti-CD29 im-
munostaining of the tendon tissues further confirmed the
presence of PLX-PAD cells at 4 weeks after the injection (Fig. 4).

Load to Failure and Stiffness

The experimental group demonstrated significantly greater
load to failure at 2 weeks (77.01 = 10.51 N) compared with
the control group (58.87 £ 11.97 N; p = 0.01) (Fig. 5), and it
was also greater than that of an uninjured tendon (70.23 £

AB (gray scale units) Il PLX-PAD
2.0%108 Saline
1.5x10%+
1.0x1084 I
5.0x107-

0.0~
1 week 2 weeks 4 weeks

Polarized light microscopy of patellar tendon specimens at 0° and 45° of rotation at 10x maghnification. There were no significant differences in collagen organization
as measured by brightness changes (AB) between the PLX-PAD and saline solution groups during the experiments. The error bars represent the standard deviation.
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Gene expression in injured patellar tendons after treatment with PLX-PAD therapy or saline solution. *P < 0.05. The error bars represent the standard

deviation.

9.36 N), although that difference was not statistically sig-
nificant. The tendons treated with PLX-PAD cells exhibited a
significant increase in the load to failure between 1 and 2
weeks (53.52 £ 11.11 versus 77.01 + 10.51 N, p < 0.002),
suggesting greater interval healing during this period; the
saline solution-treated tendons did not display similar
improvement between 1 and 2 weeks (54.64 + 18.38 versus
58.87 £ 11.97 N, p = 0.57). While tendons treated with PLX-
PAD cells had a higher mean load to failure (83.74 * 15.34
versus 78.19 = 21.74 N in the control group) and stiffness
(31.44 + 6.06 versus 27.91 + 6.57 N/mm) at 4 weeks, the
differences were not significant.

Histological Analysis

The patellar tendons became hypercellular and disorganized as
a result of the collagenase-induced degeneration. While there
was higher cellularity in the tendons treated with PLX-PAD
than in the controls at 1 week, the cell counts did not differ
significantly between the 2 groups at any time point (Fig. 6).
There was a trend toward a greater area of tendinosis in the
PLX-PAD-treated tendons at 1 and 2 weeks, but this also did
not reach significance at any time point (Fig. 7). Finally, there
was no significant difference in collagen organization as mea-
sured by brightness change on polarized light birefringence
between the groups at any time point (Fig. 8).

Gene Expression Analysis

Patellar tendons treated with PLX-PAD cells demonstrated a
different early inflammatory gene expression profile, including
increased levels of IL-1p and IL-6 at 4 days, compared with the
controls (Fig. 9). At 1 week, the control tendons had greater
type-I collagen gene expression (p = 0.02) and a trend toward
greater type-III collagen gene expression (p = 0.06). We did
not observe significant differences in bFGF, VEGF, or TGF-
B1 expression between the 2 groups.

Discussion

he human placenta is an emerging source of reparative

cells. In this study, we found that PLX-PAD had a modest
effect on early tendon healing following collagenase-induced
tendinopathy. We believe that this is a notable finding, as a
robust healing response is expected in this model. A unique
consideration is that the collagenase injection is essentially
an acute tendon injury that initiates a vigorous healing re-
sponse in rats. The presence of an active biological healing
process would make it harder to demonstrate acceleration of
healing. The animal model that we used in our study has
been widely utilized to evaluate various tendon repair ther-
apies; however, it should be viewed as a model of acute
tendon injury and repair rather than a simulation of chronic
tendinopathy***°.
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Prather et al. demonstrated that human PLX-PAD cells
have pro-angiogenic effects that result in greater blood flow
and capillary formation". Furthermore, these cells appear to be
immunoprivileged and require no histocompatibility matching
prior to administration, which is important in allogenic cell
therapies. The combination of pro-angiogenic properties and
lack of histocompatibility concerns makes PLX-PAD cells an
attractive treatment option for tendon disorders. To our
knowledge, this study is the first to evaluate the application of
such cells in tendon injuries.

On the basis of our findings, we hypothesize that PLX-PAD
cells modulate tendon healing via their effect on the inflamma-
tory cascade, which is necessary to start the injury-repair con-
tinuum. At early time points, we found higher levels of IL-13 and
IL-6 in PLX-PAD-treated tendons. Pro-inflammatory cytokines
such as IL-1@ are important in promoting prostaglandin syn-
thesis and vasodilation, which play a role in inflammatory cell
chemotaxis and initiation of the tendon reparative process® . It
is well-established that inflammation can lead to new collagen
formation (i.e., fibrosis). IL-6 has an important role in activating
the immune system, has both pro-inflammatory and anti-
inflammatory properties®, and promotes collagen synthesis’***.
The importance of IL-6 in tendon healing has been demonstrated
in IL-6 knockout mice, which have inferior tendon properties
after repair™. Successful tissue healing after injury likely requires
a complex interplay between varying levels of pro-inflammatory
and anti-inflammatory mediators.

Differences in the early inflammatory cascade may have
resulted in the early improvement in the load to failure of the
tendons treated with PLX-PAD cells. Combined with the his-
tological data that demonstrated an early trend toward greater
areas of tendinosis in PLX-PAD-treated tendons, the cumula-
tive data may indicate a more exuberant fibrotic scar response
in those tendons. The fibrotic tissue likely therefore accounts
for the early modest biomechanical difference at 2 weeks after
treatment with PLX-PAD cells. Future work to measure the
cross-sectional area of the treated tendons may further cor-
roborate these findings.

The observed differences between the PLX-PAD and
saline solution groups in this study dissipated by 4 weeks after
treatment. The lack of sustained benefit at 4 weeks likely
reflects both the rat’s innate exuberant healing response and the
decreasing presence of PLX-PAD cells within the tendon. The
decrease in fluorescent signals over the study period likely
reflects the cells’ lack of capacity for self-renewal. This finding
appears consistent with previous biodistribution data that
demonstrated that PLX-PAD cells were present 3 weeks after
implantation in mice”. The role of additional injections of
PLX-PAD cells to maintain the early observed therapeutic
effects is one potential area for future investigation.

While we believe that our study is the first to evaluate the
use of human PLX-PAD cells for treatment of tendon injuries,
other preclinical studies have shown the regenerative properties
of extraembryonic tissues in musculoskeletal applications'"”.
Mesenchymal-like cells isolated from human umbilical cords
and placentas have demonstrated favorable chondrogenic prop-
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erties*!. Gene expression analyses support this by showing
higher type-II collagen and glycosaminoglycan synthesis
relative to mesenchymal-like cells harvested from the bone
marrow’***, Placenta-derived mesenchymal-like stromal
cells have also shown potential for cartilage tissue engineering**.

This study has limitations inherent to the use of animal
models. While injuries induced with collagenase are an ac-
cepted experimental model for tendinopathy®, a chemically
induced injury does not truly replicate the human condition
of a chronic overuse condition. We believe that it should be
viewed as a model of acute tendon injury and repair rather
than a simulation of chronic tendinopathy. A tendon overuse
model, with daily treadmill running, may better approximate
the human clinical condition; however, such models result in
subtle microscopic structural changes that may not be con-
sistently produced in each laboratory animal*, which is not
ideal for evaluating novel pharmacotherapies™*. Our study
also used 1 cell concentration; therefore, future studies of
alternative dosages will be important to optimize the treat-
ment. Furthermore, the results of a particular therapy may
also be affected by the specific animal model and species.
Rodents are routinely used for laboratory studies because of
the cost and hardiness of the species. However, the rat’s innate
robust healing response may limit the ability to detect dif-
ferences, particularly at later time points. Finally, results of
laboratory animal studies, such as the current investigation,
should be viewed as proof of concept. Translating treatment
from preclinical studies to human clinical conditions requires
further validation.

In summary, we found that a single injection of PLX-
PAD cells resulted in transient early improvement in tendon
load-to-failure properties in an experimental model of ten-
dinopathy. Human extraembryonic tissues are readily available
and represent another source of musculoskeletal reparative
cells that may have promise for tissue repair. Additional pre-
clinical investigations are necessary to understand the inter-
action between PLX-PAD cells, the postinjury inflammatory
cascade, and tendon healing. ®
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